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ABSTRACT
The formation of spatially patterned structure s in biological

organisms has been modelled in recent years by various mechanisms ,

including pairs .of reaction - diffu sion equation s

u~ = 
~~ 

V 2u 4- f(u , v)

v~ = D2 V v + g ( u ,v).

Their analysis has been by computer simulation . In some cases , u can

be interpreted as an activator and v an inhibitor . The following problem

is treated: given a “pattern ’t u = ç(x) v = ~( x) ,  find a system which

has It as a stable stationary solution (sta bility is used in various senses

in the paper). This inverse problem is shown to have solutions for reason-

able ~ and 4j . The solutions constructed are of act ivator- inhibi tor  type
“4 . ,

with > D~ . ~~~
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ON MODELLING PATTERN FORMATION

BY ACTIVATOR-IN HIBITOR SYSTEMS

Paul C. Fife

1. Introduction.

The formation of spatially patterned structure s in biological organ-

isms has been modelled by various mechanisms in recent years , (see ,

for example , the survey by Cooke [2] for a description of recent work In

the area) .  Among these modelling attempts have been those using only the

processes of chemical reaction and the diffusion of the reacting species.

The most common approach to this problem has been that  of small-ampl i tude

(linear or nonlinear) analysis of the onset of symmetry-breaking instabili t ies.

I shall not attempt to survey results using this a pproach , except to say

that they were begun by the well-known work of Turing , and include , among

others, the work of Gmitr~ Othmer , a nd Scriven , Prigogine , Lefever , and

Nicolis , and Segal , Jackson , and Levin. We are concerned here with models

yielding large-amplitude patterns. Notable in this regard is the work of

Gierer and Meinhardt [6 , 7 ,9 ,10] in Tubingen , and Bab loyantz , Hiernaux ,

Herschkowitz-Ka u fman , Nicolis , Prigogine , and others in Brussels [1 , 81.

See rj lso [4] for models of sharply differentiated structures. These model5

are generall~, of the form

( I a)  u = D V 2u + f(u , v)

( i b )  v~ = D2 V 2v + g(u , v) ,
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AOl .



wh ere u and v are the concentrations of two hypothet ical reacting
4

substances, ari d the source terms f and g are derived from assumed

reaction schemes. The analysis  of these equations has been by computer

simulation (except In [4]) . The results have indeed indicated the appear-

ance of spatial patterns of various sorts.

The important problem here is , given a stationary spatial pattern of

some general description , to find a system of reaction-diffusion equations

which will yield that pattern as a stable solution . In addition , one wants

to be able to interpr et the reaction term s on the basis of some reasonable

reaction kinetics. It is this first inverse problem (given a solu tion , find

the equations) that we are concerned about in the present paper. We re-

strict attention to two-component systems of the form (1) with one space

variable x (see §4 for extensions to higher dimensions), and show that

for any reasonable given time-independent function u = q~( x) ,  there are

systems of this type which have a stable stationary solution with u

Within certain limitations , the function v = 4(x) can also be prescribed .

Systems having the given functions as solution are easy to construct , but

stability is an elusive property , and the difficult part is finding systems

for which the given solution is stable. For example , the corresponding

inverse problem for a scalar equation , u
~ 

- u + f (u ) ,  the pattern being

defined for all x , does not have a solution unless the required

pattern is monotone; and even then it is structurally unsta ble ,

as small changes in f will destroy the pattern [5].
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We leave aside the second imp ortant task mentioned above , namely

the interpretation of f and g on the basis of some reasonable reaction

kinetics . The systems we construct have rio obviou s interpretation in

those term s, and for this reas~~i are riot likely to be of practical impor-

tar .ce as models . At th e same time , in constructi ’ng model reaction -diffu-

sion systems with only two components , one should not attach overriding

importance to having them mirror specific reaction networks involving the

two species alone. In fact , the actual mechanism modelled will involve

a large number  of reacting species (and other entirely different processes

as well). One usually Justifies the reduction to two species o~ the basis

that various pseudo-steady-state , slow reaction , or other approximations

can often be made to effect such a reduction . But when these approxima-

tions are introduced , the connection between the source terms f and g

and the actual kinetics is necessarily obscured; in part icular , f and g

do not conform to mass-action kinetics between the two hypothetical

species.

The only thing we require of f and g is that they be of activator -

inhibitor type , which we define as follows :

Definition: u is an activator for (1) if 1u > o~ g > 0 .

v is an inhibitor for ( 1) if f
~ 

< 0 , g < 0 .

Thus Increasing the amount of u present enhances the product ion of u

and v , whereas increasing v has the opposite effect. This requirement

was occasioned by the fact that Gierer and Melnhardt ’ s models are of

-3 -



activator-inhibitor type , with the inhibitor diffusing more rapidly than the

activator. This latter fact is also true in our scheme , and is necessary

to produce stability of the pattern . In fact , one major point of the present

paper is an elucidation of how activator-inhibitor mechanisms with diffe r-

ent diffusivities may enhance sta bility .

Up to this point , we have not spoken of boundary conditions which

one must impose if ( 1) Is to be solved in a bounded domain in space. They

are of little importance in our argument , which is valid for any reasonable

boundary conditions , and even for problems on the whole line with no

boundary .

The concept of stability we use for most of the results is linearized

stability, wherein one examines the spectru m of the operator S obtained

by linearizing the right hand side of (1) about the stationary solution (q ’,~~) .

If the spectrum Z(S) has points X with Re X > 0 , then (
~ ,4) is un-

stable , whereas if all points have Re X < 0, it is stable . Marginal sta-

bility is when Z(S) has a point with Re X 0 , but none with Re >.~ > 0 .

From linear stability , one can often deduce stability In a stricter (such as

C°) sense ; in particular , that can be done with our examples of patterns

on a finite interval , and for our “ single-peak” pattern on the whole real

line . For any pattern on the whole line , 0 is always in s(S), so the

most we can hope for in the general case is marginal stability , which Is

what we in fact obtain . In the case of “single peak” distributions on the

whole line , however , to: which ç is even and monotone for x > 0 , it

-4-



turn s out that  0 will be an isolated point of i(S),  and we apply a theorem

of Sattinger [11] to obt ain the result that  the stationary solution is stable in

the C0 sense. I believe that our i~ sults are among the first in which

stability is proved for solutions of systems with two or more components ,

on the entire real line , or of large amplitude patterns on a finite interval .

Some of the results in this paper were announced in [5].

2. The Inverse problem on a finite interval.

We consider systems of the form

(Za) u u + f(u,v),xx

(Zb)  v~ = k v + g(u ,v)

for functions u ,v defined for x ~ [a , b], t > 0 . We also prescribe bound-

ary conditions at the endpoints a and b , and for definiteness take them

to be of no-flux type :

(3)  u ( a , t) u ( b , t) = v ( a ,t) = v ( b , t) = 0

For a given stationary solution u = q~(x) ,  v = 4(x) of ( 2 ) ,  ( 3 ) ,  we

denote by S the operator obtained by linearizing the right side of (2 )

about (c,4) .

- (
l:ixx + ~u~ ”4 +

S(  ~
) =

kv + g~(c~,4) u +

The operator S is to be considered as acting on (C 0 ) 2 C°[a , b]X C0[a ,b],

with domain the C2 functions satisf ying (3) . We denote its spectrum by E( S) .

The patterns c(s) which we consider will be in C2[a , b], and

will have the property that ç” is a function only of q’ . This

latter means that ç is even with respect to any local maximum or
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minimum , so that  its graph (see Figure 1) Is symmetric with respect to

vertical lines through such maxima and minima . To be more precise , the

statement Is that ç’ can be extended to be defined for all x , and the

extended graph has those symmetry properties.

U

a
h
I b X

Figure 1. Example of a pattern ~(x) with two vertical axe s of
symmetry (dotted lines) .

Theorem 1: Let c be a function in C1[a ,b], satisfying q”( a) = q”(b) = 0 ,

2and q”(x) = F(c (x)) for some C function F . Let 4 satisfy

(4) c = c14 + C
2 , 

c1 > 0

Let k > l .

Then there exist function s f(u ,v),  g(u , v), satisfying I > 0 ,

g > o~ f < 0 , g < 0 , such that (q’,4i ) is a stable or marginally stable

stationary solution of (2) ,  (3 ) .  Furthermore s(S) is discrete and is located

entirely in the half-plane {Re X < 0 )  except possibly for a simple eigenvalue

at the origin .
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Proof: First consider the case c ~ 4’, so C
1 

= 1, C
2 

= 0 . For some

constant o~ to be determined later , let

( Sa)  f(u ,v) = -F(u) + cr (u-v)

(5b)  g(u ,v) -k F(v)  + k o (u -v )

If o is chosen large enough , these will be the required fun ctions . First of

all , it i s clear that (u ,v) = (p,~~) satisfies (2 ) ,  ( 3 ) .  We must show it is

d 2
a stable or marginally stable solution . Let L - F ’( c ’(x) ) ,  an

0 dx 2operator on C [a , bJ with domain ~(L) consisting of C functions

sat isfying ( 3 ) .  Then

- (L ~~~+ o ~~-~ )
S ( ~~~) =  Iv \~~kL~~ + k o ( i~-v)

Let e = 1/k , and let P(X ,p . ) be the polynomial

~ + X [( l - c )~ - ( l + c ) ~~] +

Then P(X , L) is a fourth order operator with domain function s h € ~(L)

such that Lh € ~(L);  furthermore ~ ( P(X , L ) )  = P(X ,~~( L))  [3 , p . 604]. Let

A {X: ~ ( P(X , L)) ~ 0)  = : P (X ,1i) = 0 for some ~i. € ~~(L)  }.

Proposition 1: E(S) C A .

Proof: Let X ~ A . Then 0 is in the resolvent set of P (X , L), and

P (X , L)~~ is a bounded operator on C0[a ,b]. Consider the problem

(6) 

0 

(S - K I)[  ~~J = [ ~ ]

with p,q C [a , bJ . It can be solved explicitly by the formula

(7a)  U = (L - - eX )P( K , L)~~p + c ~ P( X , L) 1q

(7b) -~ P(X ,L)~~p + c(L + r-X)P(?.,L)~~q

— 7 -



It is verified directly, using the fact that P(X ,L) 1 commutes with L on

~(L), that this formula defines a two-sided bounded inverse ( S - K ) 1. There-

fore K is in the resolvent set of S . This establishes the proposition .

Proposition 2: A is a discrete set in the hal f -p lane {Re K < 0 ) .  Further-

more A C {ReK < 0 )  unless 0 €  ~ ( L), in which case A = {0) Li T

with T C {ReX < 0 ) .

Proof: The discreteness follows from the discreteness of �~( L) . We know

that ~ ( L )  is real and bounded from above . Let o be so large th at

( l - c ) o  - (l+c ) Z (L)  > 0 .  Then if ~i € E(L) and ~ # 0, the coefficient of K

in the polynomial P( K ,~~) will be positive , so that the sum of the two roots

of P (K ,~i.) = 0 will be negative . If they are complex conjugates ,

their common real part must be negative. If they are reai , the n K 1K 2 =

> 0, so that they must both be negative. In any case , Re K < 0  for any

root of P

On the other hand if ~ = 0 e E (L) ,  then P( K ,0) has one negative

and one 0 root. This proves the proposition .

We now observe that > 0 , etc ., for large enough o . To corn-

plete the proof of Theorem 1, we need only show that when 0 is an eigen-

value of S , it ~s simple. From Proposition 2 , we know this happens only

when 0 is an eigenvalue of L . Under boundary conditions (3) ,  L has

only algebraically simple eigenvalues so there is a unique (up to a scalar

factor ) nullvector 0 . Let (x1,x 2) be any nulivector of S , so that

+ o1x1-x 2) = 0 ,

L~ 2 + f(x 1 x 2) = 0 .
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Sub t ra :t i n T .  we see tha t  L(\ 1- \ )  = 0 , which  implies tha t  x 1 -~~ = aO for

son~e scalar a . Hen ~e L~ 1 -f a- aO 0 . But since 0 is an algebraically

simple eigenvalue of L . th is  implies a 0 and = bO . Hence

(x 1.x 2 ) = b(0,0), and S has only one nulivector. A similar argument shows

that its algebraic multiplicity is also 1 . This completes the proof of the

theo rem in the case ~ =

N ow if .~p � ~, but is given by (4 ) ,  we first wri te the system ( 2 )

with f and g given by (5), and the symbol v replaced by w~ Then we

effect a change of variable w = c
1
v + c

2 to obtain the desired system in

u and v . This completes the proof .

Remarks: 1. If, instead of (4), ~ and ~4i are related nonlinearly by

= h(~ )

with h ’( ç~) > 0, then we still obtain a type of nonlinear diffusion system for

u and v. The difference Is that now (2b)  is replaced by

(h’(v)v )
Vt = k 

h’(v) + g(u,v)

This Is obtained by the procedure discussed in the preceding paragrapL

except that the change of variable is now w = h ( v ) .

2 . The specific form of the boundary conditions ( 3 )  was not used;

only the fact that ~ (L) is bounded from above , discrete , and contains 0

if at all , only as a simple eigenvalue. If this last condition is not fulfilled ,

then all assertion s of the theorem remain true except the final one regard ing

th e simplicity of the eigenvalue at the origin . We may therefore replace (3)

by any oth er bour fdary conditions for which the above requirements are met .

-9-



In particular , periodic boundary conditions could be used . In this  case , 0

is always an e igenvalue of L , becau se Lco ’ 0 . If L has constant

coefficie nts , it would of course be double, because Le” = 0 as well. But

in general , one expects it to be simple .

3. The solution of the inverse problem is certainly not unique; for

example , a- car-, be any large enough positive constant . More generally,

in place of (5), we may use functi ons

(8a) f(u,v) -F(u) + a- (u-v) + (u-v)2 ~u ,v)

(8b)  g(u ,v) = -kF(v)  + k r ( u - v )  + ( u - v )  g(u , v),

where f and ~ are arbitrary , a- and T are such that there ~re no points

of ~(L)’ in [T-a-,0)(if a- > ‘r) or in (0 ,’r-a- ] ( i f  a- < t),  and ‘r > e a- + ( 1+c)M ,

where M = Max(~~( L)) .  With such a pair f ,g ,  the proof of Theorem 1 goes

through with only obvious modifications.

3 . Pattern s on the entire line.

The restriction to a finite interval In the previou s section is un-

necessary . Let c be a bounded nonconstant function , defined for all x

such that c” = F( rp) for some C~ function F . Then q wil l be periodic ,

peaked or monotone. Here “peaked” means that it has a single maximum or

minimum , and approaches a limit as lx i - .  ~
Theorem 2. Let c be as described , and let ~ satisfy

= c14 + c 2, c1 > O .

Let k > I . Then the conclusion s of Theorem 1 hold , except that E( S) is

no longer discrete , and in the periodic case , the eigenvalue at the origin

-10-



is not necessarily simple. In all cases , 0 E ~ (S) .  In the peaked case , let

u r n  q ’(x) . If F ’(c 0) > 0 , then 0 is an isolated point of �..(S) and

(~~, ~ ) is sta l ie in the uniform norm . In the monotone case, let =

u r n  ç (x) and = Iimc (x). If Ft ( c
i ) > 0 , I = 0,1, then (p,4) is

x-. -~ x-..~~
again stable in the uniform norm .

Proof: The proof of Theorem 1 holds withou t change , with the same

functi ons (5) ,  except that A will no longer be discrete , because ~ (L)

is no longer discrete. In the peaked case with F ’(c 0 ) > 0 , we know that

the points of Z(L) greater than -F ’(p 0 ) are isolated . This follows from

[3 , p. 1448] and the easily proved fact that any bounded solution of

( L- \ )u = 0 for K > -F’(c 0 ) must decay exponentially, so is in

hence discrete points of L in this range are eigenvalues of L as an

operato’ in p 2( R) . See also [12]. On the other hand , 0 is always an

eigenva lue of L , since Lq~’ = 0 , and it is simple and has a finite number

of nodes. So although A is no longer discrete , it stil l lies in the left half-

plane except for an isolated point at the origin . The same is therefore true

of s(S). The proo f that 0 is a simple eigerivalue of Z (S)  proceeds as

before.

To prove that (~‘,4i) is stable in the C° sense , we shall use

Sattinger ’ s stability theorem [11]. To veri fy that theorem ’s hypotheses ,

it suffices to show that �.~(S) lies on the negative real axi s , an d that t he

resolvent (S -X) ~~ satisfies the following estimates for ~arg K i  < 71’ -ô <~ p7~

and K large enough . (In the following, the symbol K will denote



severa l different constants.)

( 9a) il ( S -K) ’h lI  0 < -
~~~~~

— lI h It 0 2( C ) ~ ( C )

( 9b) l l ( S - K) ’h11 12 < U h l1 0 2

It may be verified directly from the definition of A , a n d the fact

th at ~ ( L) is real , that A , hence Z(S) ,  is real for a - ( l - e )  large enough.

Therefore 2 ( S )  certainly lies in the required sector.

We now turn to the verification of (9) .  First , we note that esti-

mates of that form were obtained in [12] for the operator L instead of S ,

provided F ’(q~(x))  approaches its limit exponentially fast as i x i _ ’ QO . But

= 0 , F’(c 0 ) > 0 , and c satisfies p ” - F(q~) 0 , so q~( x ) —

exponentially as l x i  — ~~ . There fore F ’(ç(x)) - F’(ç0) exponentially as

well .

We may factor P( K ,L) as follows :

P( K ,L) = (L-p.1
)( L-~~2

), 
~~ 

= ~ [x( l+c)±  [K 2(l-c) 2-4u( l-c)K]~ ].

It is seen that for large lx i ,  IP.~I are also large and for some K ,

( 10) I(’I X I  < < K~ X~

By (9) and the above mentioned estimate for (L- K ) 4, we have the following,

for large enough l x i  in the sector ( arg x( < ir - 6:

(11) II(L—,.~.1
) ’hIi 

~~ 

< —

~~~
-— ii hIt 0C (R) C (R)

If (L-~ )w = h , we have w” = h - ~1w + F’(~ ( x))w , so from (11) ,

lI(L-~1) 1il ~ ~ K U h U 0C (R) C (R )

-12-



Now

ii P(X,L)~~hIj ~ 
= i i ( L- ~1) 4(L- i~2 )~~h Ii 2

~ K I i ( L - ~ 2 )~~hIi 0 ~ 
—

~ -— ii h II 0
C C

and so

ll L P( K , L) ” h il 0 < K II P( K , L)~~h II 
~ 

< 
~~~ 

~h f l  0

These estimates , applied to the explicit representation (7)  of (S -K) 1,

yield

( 12) i I ( S — K ) ~~ ( ~) U 0
)
2 lx i  Ii( q (C 0 ) 2

If ( S - K ) (  ‘
~~

) = ( P~, we may again represent ~~
“ and ~“ in terms of

u , v , p, and q, and so obtain

I S - x~~’ (
~ ) U 2 2 < KII( ~) il o~

Interpolating between this estimate and (12), we finally obtain
- p K p

- 

q 
(C

1
)2 

— 

~~~~~~~~~~~~ 
q (C 0 ) 2

This establishes the C0-stabllity of peaked distributions.

For monotone distributions, Z(L) is discrete above Max [-F ’(p 0 ),

<0 . The rest of the argument is the same. This completes th e

proof of Theorem 2.

Example: Possibly the simplest illustration of single-peak modelling

would be for the pattern

6 x/d
c( x) = x/d Z = 4(x)

(l+e

which represents p peak with maximum of 3/2 at x = 0, c( cc) = 0 , and

-13-



an appr oximate width d , which is arbitrary . Since c” + d~
”2 (co 2 -c) = 0

the model reaction-diffusion equation s can be taken to be

u = u + d
2
u2 + (a--d

2)u - a-vxx

v = kv + kd 2v2 - (o.+ kd ”2 )v + a-uxx

Remark: In the peaked case, there Is another stationary solution of (2 )

with (5) besides u v ~~~ (x), namely the constant solution u V

It is also stable, as the above analysis, together with the fact that

F’(c0
)> 0 , shows. This suggests there may be a third stationary solution

which is unstable . In fact , the function F(c) must take on positive and

negative values for c� ço0, so there mus t be another zero of F. , say

for which F’(ct~1) <0 . Then u v c is a solution. If S is the lineariza-

tion about this solution, the above analysis shows its spectrum to be con-

tinuous and to extend up to the origin. Very possibly this third solution,

though marginally stable in the linearized sense, will turn out to be unstable

in the C0 sense .

4. Discussion

1. Many of the results extend to analogous problems In more than one

dimension . For this extension, one replaces u and v in (2) by V2uxx xx

and V
2
v respectively, and considers patterns c for which V2q~ = F(co).

Single radially symmetri c peaks , for example , have this property , and it is

likely that lattices of peaks can also be constructed with it . Then s(S)

again lies on the negative real axi s. However , the eigenvalue 0 is no

longer necessarily simple.

-14-



2. It is clear that the stability proofs given in the preceding two

section. depend on

( i )  large enough activation by u and inhibition by v , and

( i i)  the diff usivity ( k )  of v being larger than that ( 1) of u

At th e same time , It is clear from Remark 3 at the end of §2 that the para m-

eters a- and 7 cannot be completely independent for the stability proof

to go through . We interpret this by saying that the u-activation and the

v-activation cannot be completely independent .

In our constructed models , there is also a relation between the

mag nitudes of the activation and the inhibition , and this relation depends

on th e relative amplitudes of the required distributions ct’ and ~~. For

simplicity , let u s ta ke c2 = 0 in (4) ;  then this relative amplitude will be

c1. For c1 not necessarily I , the equations corresponding to (8) will be

f(u,v) = -F(u) + a- (u-c1
v) + (u-c 1v)

2 I

g(u,v) - ~~F(c1
v) + ~2 (u_c

1
v) + (u-c 1

v)2 ~

It may be instructive to express all the relations mentioned above

directly in terms of some reasonable activation and inhibition parameters.

Accordingly, we define the

u-activation A average value of f (c ,~ ) -~ a- (for a- large),

v-activation A average value of g ( c,~ )-” (for T large),
Cl

u-inhibition a C a-u 1

v-inhibition I kT
v

-15-



For our models , then , the following relations exist between the

parameters A , A , I , I , c , and ku v u v 1

A ,A ,l , t >> l ,
U V U  V

k >1 ,

(13) I —~ c A
u l u

I -~ cAv l v

A -~v c
1 u

All of these are clear from the preceding except possibly the last. It follows

from the fact that although a- and T were required to be large, their differ-

ence had to be small enough . So we can write a-

This is no demonstration that the relation s (13) are always necessary

to produce stable patterns; nevertheless it seems reasonable to use them as

one possible guide in constructing other models , not of the form given in

the present paper.
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—- stationary solution (stability is used in various senses in the paper).

This inverse problem is shown to have solutions for reasonable p and ~~.The solutions constructed are of activator-inhibitor type with D2 > D1


